5.36 The sum of the digits of \(m + n \) is the sum of the digits of \(m \) plus the sum of the digits of \(n \), minus \(p - 1 \) times the number of carries, because each carry decreases the digit sum by \(p - 1 \).

5.37 Dividing the first identity by \(n! \) yields \(\binom{m+n}{n} = \sum_k \binom{m}{k} \binom{n}{n-k} \), Vandermonde’s convolution. The second identity follows, for example, from the formula \(x^k = (-1)^k |x|^k \) if we negate both \(x \) and \(y \).

5.38 Choose \(c \) as large as possible such that \(\binom{1}{0} \leq c \). Then \(0 \leq c - \binom{1}{0} < \binom{c}{1} = \binom{c}{c-1} \); replace \(n \) by \(n - \binom{1}{0} \) and continue in the same fashion. Conversely, any such representation is obtained in this way. (We can do the same thing with
\[
\binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{m}, \quad 0 \leq a_1 < a_2 < \cdots < a_m
\]
for any fixed \(m \).)

5.39 \(x^m y^n = \sum_{k=1}^n \binom{m+n-1-k}{n-1} a^n b^{m-k} x^k + \sum_{k=1}^n \binom{m+n-1-k}{m-1} a^n b^{m-k} y^k \) for all \(m, n > 0 \), by induction on \(m + n \).

5.40 \((-1)^{-m+1} \sum_{k=1}^n \sum_{j=1}^m \binom{m-k-1}{n-j} \binom{m-1}{k} \binom{n}{j} = (-1)^{m+1} \sum_{k=1}^n \binom{m-1}{n-k} \binom{m+1}{m-k} \binom{n+k-1}{m} - \binom{m-1}{m} \binom{n+k-1}{m} \), which is \(2^m n!/(2n+1)! \).

5.41 \(\sum_{k=0}^n n!/(n-k)! (n + k + 1)! \equiv (n!/(2n+1)! \sum_{k=n}^{2n+1} \binom{2n+1}{k} \), which is \(2^{2n} n!/(2n+1)! \).

5.42 We treat \(n \) as an indeterminate real variable. Gosper’s method with \(q(k) = k + 1 \) and \(r(k) = k + 1 - n \) has the solution \(s(k) = 1/(n + 2) \); hence the desired indefinite sum is \((-1)^x \frac{x+1}{n+2} / \binom{x+1}{n+1} \). And
\[
\frac{\sum_{k=0}^n (-1)^k / \binom{n}{k}}{\binom{n+1}{n+2}} = \frac{1}{\binom{n+1}{n+2}} \frac{1}{\binom{n+1}{x+1}} = \frac{2}{n+2} [n \text{ even}].
\]

This exercise, incidentally, implies the formula
\[
\frac{1}{n \binom{n-1}{k}} = \frac{1}{(n+1) \binom{n}{k+1}} + \frac{1}{(n+1) \binom{n}{k}},
\]
a “dual” to the basic recurrence (5.8).

5.43 After the hinted first step we can apply (5.21) and sum on \(k \). Then (5.21) applies again and Vandermonde’s convolution finishes the job. (A combinatorial proof of this identity has been given by Andrews [10]. There’s a quick way to go from this identity to a proof of (5.29), explained in [173, exercise 1.2.6-62].)