the alarm and calls then, too. Mary, on the other hand, likes rather loud music and often misses the alarm altogether. Given the evidence of who has or has not called, we would like to estimate the probability of a burglary.

A Bayesian network for this domain appears in Figure 14.2. The network structure shows that burglary and earthquakes directly affect the probability of the alarm's going off, but whether John and Mary call depends only on the alarm. The network thus represents our assumptions that they do not perceive burglaries directly, they do not notice minor earthquakes, and they do not confer before calling.

The conditional distributions in Figure 14.2 are shown as a conditional probability table, or CPT. (This form of table can be used for discrete variables: other representations, including those suitable for continuous variables, are described in Section 14.2.) Each row in a CPT contains the conditional probability of each node value for a conditioning case. A conditioning case is just a possible combination of values for the parent nodes—a miniature possible world, if you like. Each row must sum to 1, because the entries represent an exhaustive set of cases for the variable. For Boolean variables, once you know that the probability of a true value is p, the probability of false must be $1 - p$, so we often omit the second number, as in Figure 14.2. In general, a table for a Boolean variable with k Boolean parents contains 2^k independently specifiable probabilities. A node with no parents has only one row, representing the prior probabilities of each possible value of the variable.

Notice that the network does not have nodes corresponding to Mary's currently listening to loud music or to the telephone ringing and confusing John. These factors are summarized in the uncertainty associated with the links from Alarm to John Calls and Mary Calls. This shows both laziness and ignorance in operation: it would be a lot of work to find out why those factors would be more or less likely in any particular case, and we have no reasonable way to obtain the relevant information anyway. The probabilities actually summarize a potentially
infinite set of circumstances in which the alarm might fail to go off (high humidity, power failure, dead battery, cut wires, a dead mouse stuck inside the bell, etc.) or John or Mary might fail to call and report it (out to lunch, on vacation, temporarily deaf, passing helicopter, etc.). In this way, a small agent can cope with a very large world, at least approximately. The degree of approximation can be improved if we introduce additional relevant information.

14.2 THE SEMANTICS OF BAYESIAN NETWORKS

The previous section described what a network is, but not what it means. There are two ways in which one can understand the semantics of Bayesian networks. The first is to see the network as a representation of the joint probability distribution. The second is to view it as an encoding of a collection of conditional independence statements. The two views are equivalent, but the first turns out to be helpful in understanding how to construct networks, whereas the second is helpful in designing inference procedures.

14.2.1 Representing the full joint distribution

Viewed as a piece of “syntax,” a Bayesian network is a directed acyclic graph with some numeric parameters attached to each node. One way to define what the network means—its semantics—is to define the way in which it represents a specific joint distribution over all the variables. To do this, we first need to retract (temporarily) what we said earlier about the parameters associated with each node. We said that those parameters correspond to conditional probabilities \(P(X_i, \text{Parents}(X_i)) \); this is a true statement, but until we assign semantics to the network as a whole, we should think of them just as numbers \(\theta(X_i, \text{Parents}(X_i)) \).

A generic entry in the joint distribution is the probability of a conjunction of particular assignments to each variable, such as \(P(X_1 = x_1 \land \ldots \land X_n = x_n) \). We use the notation \(P(X_1, \ldots, X_n) \) as an abbreviation for this. The value of this entry is given by the formula

\[
P(X_1, \ldots, X_n) = \prod_{i=1}^{n} \theta(X_i, \text{parents}(X_i))
\]

where \(\text{parents}(X_i) \) denotes the values of \(\text{Parents}(X_i) \) that appear in \(X_i \). Thus, each entry in the joint distribution is represented by the product of the appropriate elements of the conditional probability tables (CPTs) in the Bayesian network.

From this definition, it is easy to prove that the parameters \(\theta(X_i, \text{Parents}(X_i)) \) are exactly the conditional probabilities \(P(X_i | \text{Parents}(X_i)) \) implied by the joint distribution (see Exercise 14.2). Hence, we can rewrite Equation (14.1) as

\[
P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | \text{parents}(X_i)) \quad (14.2)
\]

In other words, the tables we have been calling conditional probability tables really are conditional probability tables according to the semantics defined in Equation (14.1).

To illustrate this, we can calculate the probability that the alarm has sounded, but neither a burglary nor an earthquake has occurred, and both John and Mary call. We multiply entries