We also want to consider the function
\[V(x, y) = V_x(x, y)F(x, y) + V_y(x, y)G(x, y), \]
where \(F \) and \(G \) are the same functions as in Eqs. (6). We choose this notation because \(V(x, y) \) can be identified as the rate of change of \(V \) along the trajectory of the system (6) that passes through the point \((x, y)\). That is, if \(x = \phi(t), y = \psi(t) \) is a solution of the system (6), then
\[
\frac{dV[\phi(t), \psi(t)]}{dt} = V_x[\phi(t), \psi(t)] \frac{d\phi(t)}{dt} + V_y[\phi(t), \psi(t)] \frac{d\psi(t)}{dt} \\
= V_x(x, y)F(x, y) + V_y(x, y)G(x, y) \\
= \dot{V}(x, y).
\]

(8)

The function \(\dot{V} \) is sometimes referred to as the derivative of \(V \) with respect to the system (6).

We now state two Liapunov theorems, the first dealing with stability, the second with instability.

Theorem 9.6.1
Suppose that the autonomous system (6) has an isolated critical point at the origin. If there exists a function \(V \) that is continuous and has continuous first partial derivatives, is positive definite, and for which the function \(\dot{V} \) given by Eq. (7) is negative definite on some domain \(D \) in the \(xy \)-plane containing \((0, 0)\), then the origin is an asymptotically stable critical point. If \(\dot{V} \) is negative semidefinite, then the origin is a stable critical point.

Theorem 9.6.2
Let the origin be an isolated critical point of the autonomous system (6). Let \(V \) be a function that is continuous and has continuous first partial derivatives. Suppose that \(V(0, 0) = 0 \) and that in every neighborhood of the origin there is at least one point at which \(V \) is positive (negative). If there exists a domain \(D \) containing the origin such that the function \(\dot{V} \) given by Eq. (7) is positive definite (negative definite) on \(D \), then the origin is an unstable critical point.

The function \(V \) is called a Liapunov function. Before sketching geometrical arguments for Theorems 9.6.1 and 9.6.2, we note that the difficulty in using these theorems is that they tell us nothing about how to construct a Liapunov function, assuming that one exists. In cases where the autonomous system (6) represents a physical problem, it is natural to consider first the actual total energy function of the system as a possible Liapunov function. However, Theorems 9.6.1 and 9.6.2 are applicable in cases where the concept of physical energy is not pertinent. In such cases a judicious trial-and-error approach may be necessary.

Now consider the second part of Theorem 9.6.1, that is, the case \(\dot{V} \leq 0 \). Let \(c \geq 0 \) be a constant and consider the curve in the \(xy \)-plane given by \(V(x, y) = c \). For \(c = 0 \) the curve reduces to the single point \(x = 0, y = 0 \). We assume that if \(0 < c_1 < c_2 \), then the curve \(V(x, y) = c_1 \) contains the origin and lies within the curve \(V(x, y) = c_2 \), as illustrated in Figure 9.6.1a. We show that a trajectory starting inside a closed curve \(V(x, y) = c \) cannot cross to the outside. Thus, given a circle of radius \(\epsilon \) about the