9.6 Liapunov’s Second Method

Let \(V(x, y) \) be a point of intersection of the trajectory and a closed curve \(V \) at worst, tangent to this curve. Trajectories starting inside a closed curve \(V \) are tangent to the trajectory at each point; see Figure 9.6.1b. Thus the direction of motion on the trajectory is inward with respect to the closed curve \(V \) and points away from the origin, as indicated in Figure 9.6.1b. Next, consider a trajectory \(x = \phi(t), \ y = \psi(t) \) of the system (6) and recall that the vector \(T(t) = \phi'(t)i + \psi'(t)j \) is tangent to the trajectory at each point; see Figure 9.6.1b. Let \(x_1 = \phi(t_1), \ y_1 = \psi(t_1) \) be a point of intersection of the trajectory and a closed curve \(V(x, y) = c \). At this point \(\phi'(t_1) = F(x_1, y_1), \psi'(t_1) = G(x_1, y_1) \), so from Eq. (7) we obtain

\[
\dot{V}(x_1, y_1) = V_x(x_1, y_1)\phi'(t_1) + V_y(x_1, y_1)\psi'(t_1)
= [V_x(x_1, y_1)i + V_y(x_1, y_1)j] \cdot [\phi'(t_1)i + \psi'(t_1)j]
= \nabla V(x_1, y_1) \cdot T(t_1).
\] (10)

Thus \(\dot{V}(x_1, y_1) \) is the scalar product of the vector \(\nabla V(x_1, y_1) \) and the vector \(T(t_1) \). Since \(\dot{V}(x_1, y_1) \leq 0 \), it follows that the cosine of the angle between \(\nabla V(x_1, y_1) \) and \(T(t_1) \) is also less than or equal to zero; hence the angle itself is in the range \([\pi/2, 3\pi/2]\). Thus the direction of motion on the trajectory is inward with respect to \(V(x_1, y_1) = c \) or, at worst, tangent to this curve. Trajectories starting inside a closed curve \(V(x_1, y_1) = c \) (no matter how small \(c \) is) cannot escape, so the origin is a stable point. If \(\dot{V}(x_1, y_1) < 0 \), then the trajectories passing through points on the curve are actually pointed inward. As a consequence, it can be shown that trajectories starting sufficiently close to the origin must approach the origin; hence the origin is asymptotically stable.

A geometric argument for [Theorem 9.6.2] follows in a somewhat similar manner. Briefly, suppose that \(V \) is positive definite, and suppose that given any circle about the origin there is an interior point \((x_1, y_1)\) at which \(V(x_1, y_1) > 0 \). Consider a trajectory that starts at \((x_1, y_1)\). Along this trajectory it follows from Eq. (8) that \(V \) must increase, since \(\dot{V}(x_1, y_1) > 0 \); furthermore, since \(V(x_1, y_1) > 0 \), the trajectory cannot approach the origin because \(V(0, 0) = 0 \). This shows that the origin cannot be asymptotically stable.