stable. By further exploiting the fact that \(\dot{V}(x, y) > 0 \), it is possible to show that the origin is an unstable point; however, we will not pursue this argument.

Example 2

Use Theorem 9.6.1 to show that \((0, 0)\) is a stable critical point for the undamped pendulum equations (2). Also use Theorem 9.6.2 to show that \((\pi, 0)\) is an unstable critical point.

Let \(V \) be the total energy given by Eq. (4):

\[
V(x, y) = mgL(1 - \cos x) + \frac{1}{2}mL^2y^2.
\]

(4)

If we take \(D \) to be the domain \(-\pi/2 < x < \pi/2, -\infty < y < \infty\), then \(V \) is positive there except at the origin, where it is zero. Thus \(V \) is positive definite on \(D \). Further, as we have already seen,

\[
\dot{V} = (mgL \sin x)(y) + (mL^2y)(-g \sin x)/L = 0
\]

for all \(x \) and \(y \). Thus \(\dot{V} \) is negative semidefinite on \(D \). Consequently, by the last statement in Theorem 9.6.1, the origin is a stable critical point for the undamped pendulum. Observe that this conclusion cannot be obtained from Theorem 9.3.2 because \((0, 0)\) is a center for the corresponding linear system.

Now consider the critical point \((\pi, 0)\). The Liapunov function given by Eq. (4) is no longer suitable because Theorem 9.6.2 calls for a function \(V \) for which \(\dot{V} \) is either positive or negative definite. To analyze the point \((\pi, 0)\) it is convenient to move this point to the origin by the change of variables \(x = \pi + u, y = v \). Then the differential equations (2) become

\[
\frac{du}{dt} = v, \quad \frac{dv}{dt} = \frac{g}{L} \sin u,
\]

(11)

and the critical point is \((0, 0)\) in the \(uv \)-plane. Consider the function

\[
V(u, v) = v \sin u
\]

(12)

and let \(D \) be the domain \(-\pi/4 < u < \pi/4, -\infty < v < \infty\). Then

\[
\dot{V} = (v \cos u)(v) + (\sin u)[(g/L) \sin u] = v^2 \cos u + (g/L) \sin^2 u
\]

(13)

is positive definite in \(D \). The only remaining question is whether there are points in every neighborhood of the origin where \(V \) itself is positive. From Eq. (12) we see that \(V(u, v) > 0 \) in the first quadrant (where both \(\sin u \) and \(v \) are positive) and in the third quadrant (where both are negative). Thus the conditions of Theorem 9.6.2 are satisfied and the point \((0, 0)\) in the \(uv \)-plane, or the point \((\pi, 0)\) in the \(xy \)-plane, is unstable.

The damped pendulum equations are discussed in Problem 7.

From a practical point of view we are often more interested in the basin of attraction. The following theorem provides some information on this subject.

Theorem 9.6.3

Let the origin be an isolated critical point of the autonomous system (6). Let the function \(V \) be continuous and have continuous first partial derivatives. If there is a bounded domain \(D_K \) containing the origin where \(V(x, y) < K \), \(V \) is positive definite,