with a subset of variables $c_k \in \mathcal{C}$ (clusters), and each edge $(kl) \in \mathcal{E}$ a subset $s_{kl} \in \mathcal{S}$ (separator) satisfying $s_{kl} \subseteq c_k \cap c_l$. We assume that \mathcal{C} subsumes the index set \mathcal{I}, that is, for any $\alpha \in \mathcal{I}$, there exists a $c_k \in \mathcal{C}$, denoted c_α, such that $\alpha \subseteq c_k$. In this case, we can reparameterize $\theta = \{\theta_\alpha | \alpha \in \mathcal{I}\}$ into $\theta = \{\theta_k | k \in \mathcal{V}\}$ by taking $\theta_k = \sum_{c_\alpha : c_\alpha = c_k} \theta_\alpha$, without changing the distribution. A cluster graph is called a junction graph if it satisfies the running intersection property – for each $i \in \mathcal{V}$, the induced sub-graph consisting of the clusters and separators that include i is a connected tree. A junction graph is a junction tree if G is tree.

To approximate the dual (1), we can replace M with a locally consistent polytope L: the set of local marginals $\tau = \{\tau_{c_k}, \tau_{s_{kl}} : k \in \mathcal{V}, (kl) \in \mathcal{E}\}$ satisfying $\sum_{x_{c_k} \setminus c_k} \tau_{c_k}(x_{c_k}) = \tau(x_{s_{kl}})$. Clearly, $M \subseteq L$. We then approximate (1) by

$$\max_{\tau \in L} \{\theta, \tau\} + \sum_{k \in \mathcal{V}} H(x_{c_k}; \tau_{c_k}) - \sum_{(kl) \in \mathcal{E}} H(x_{s_{kl}}; \tau_{s_{kl}}),$$

where the joint entropy is approximated by a linear combination of the entropies of local marginals. The approximate objective can be solved using Lagrange multipliers [Yedidia et al., 2005], leading to a sum-product message passing algorithm that iteratively sends messages between neighboring clusters via

$$m_{k \rightarrow l}(x_{c_k}) \propto \sum_{x_{k} \setminus c_k} \psi_{c_k}(x_{c_k}) m_{\sim k \setminus l}(x_{c_k \setminus N(k)}),$$

where $\psi_{c_k} = \exp(\theta_{c_k})$, and $m_{\sim k \setminus l}$ is the product of messages into k from its neighbors $N(k)$ except l. At convergence, the (locally) optimal marginals are

$$\tau_{c_k} \propto \psi_{c_k} m_{\sim k} \quad \text{and} \quad \tau_{s_{kl}} \propto m_{k \rightarrow l} m_{l \rightarrow k},$$

where $m_{\sim k}$ is the product of messages into k. Max-product and hybrid methods can be derived analogously for MAP and marginal MAP problems.

2.2 Influence Diagrams

Influence diagrams (IDs) or decision networks are extensions of Bayesian networks to represent structured decision problems under uncertainty. Formally, an influence diagram is defined on a directed acyclic graph $G = (V, E)$, where the nodes V are divided into two subsets, $V = R \cup D$, where R and D represent respectively the set of chance nodes and decision nodes. Each chance node $i \in R$ represents a random variable x_i with a conditional probability table $p_i(x_i | x_{pa(i)}).$ Each decision node $i \in D$ represents a controllable decision variable x_i, whose value is determined by a decision maker via a decision rule (or policy) $\delta_i : X_{pa(i)} \rightarrow \mathcal{X}_i$, which determines the values of x_i based on the observation on the values of $x_{pa(i)}$; we call the collection of policies $\delta = \{\delta_i | i \in D\}$ a strategy. Finally, a utility function $u : \mathbb{X} \rightarrow \mathbb{R}^+$ measures the reward given an instantiation of $x = [x_R, x_D]$, which the decision maker wants to maximize. It is reasonable to assume some decomposition structure on the utility $u(x)$, either additive, $u(x) = \sum_{j \in U} u_j(x_{\beta_j})$, or multiplicative, $u(x) = \prod_{j \in U} u_j(x_{\beta_j}).$ A decomposable utility function can be visualized by augmenting the DAG with a set of leaf nodes U, called utility nodes, each with parent set β_j. See Fig. 1 for a simple example.

A decision rule δ_i is alternatively represented as a deterministic conditional “probability” $p_i^\delta(x_i | x_{pa(i)})$, where $p_i^\delta(x_i | x_{pa(i)}) = 1$ for $x_i = \delta_i(x_{pa(i)})$ and zero otherwise. It is helpful to allow soft decision rules where $p_i^\delta(x_i | x_{pa(i)})$ takes fractional values; these define a randomized strategy in which x_i is determined by randomly drawing from $p_i^\delta(x_i | x_{pa(i)})$. We denote by Δ° the set of deterministic strategies and Δ the set of randomized strategies. Note that Δ° is a discrete set, while Δ is its convex hull.

Given an influence diagram, the optimal strategy should maximize the expected utility function (MEU):

$$\text{MEU} = \max_{\delta \in \Delta} \text{EU}(\delta) = \max_{\delta \in \Delta} E(u(x) | \delta)$$

$$= \max_{\delta \in \Delta} \sum_{x} u(x) \prod_{i \in C} p_i(x_i | x_{pa(i)}) \prod_{i \in D} p_i^\delta(x_i | x_{pa(i)})$$

$$= \max_{\delta \in \Delta} \sum_{x} \exp(\theta(x)) \prod_{i \in D} p_i^\delta(x_i | x_{pa(i)})$$

where $\theta(x) = \log[u(x) \prod_{i \in C} p_i(x_i | x_{pa(i)})]$, we call the distribution $q(x) \propto \exp(\theta(x))$ the augmented distribution [Biela et al., 1999]. The concept of the augmented distribution is critical since it completely specifies a MEU problem without the semantics of the influence diagram; hence one can specify $q(x)$ arbitrarily, e.g., via an undirected MRF, extending the definition of IDs. We can treat MEA as a special sort of “infrence” on the augmented distribution, which as we will show, generalizes more common inference tasks.

In (4) we maximize the expected utility over Δ; this is equivalent to maximizing over Δ°, since

Lemma 2.1. For any ID, $\max_{\delta \in \Delta} \text{EU}(\delta) = \max_{\delta \in \Delta^\circ} \text{EU}(\delta)$.

Figure 1: A simple influence diagram for deciding vacation activity [Shachter, 2007].

525