6.55 The stated sum is \(\frac{m+1}{x+m+1} \binom{x+n}{n} \binom{n}{m+1} \), by Vandermonde's convolution. To get (6.70), differentiate and set \(x = 0 \).

6.56 First replace \(k^{n+1} \) by \(((k - m) + m) n + 1 \) and expand in powers of \(k - m \); simplifications occur as in the derivation of (6.72). If \(m \geq n \) or \(m < 0 \), the answer is \((-1)^{n!} m^n / \binom{n}{m} \). Otherwise we need to take the limit of \((-1)^{n!} + (-1)^{m+1} \binom{n}{m} m^n(n + 1 + mH_n - mH_m) \).

6.57 First prove by induction that the \(n \)th row contains at most three distinct values \(A_n, B_n, C_n \); if \(n \) is even they occur in the cyclic order \([C_n, B_n, A_n, B_n, C_n]\), while if \(n \) is odd they occur in the cyclic order \([C_n, B_n, A_n, A_n, B_n]\). Also
\[
\begin{align*}
A_{2n+1} &= A_{2n} + B_{2n}, \\
B_{2n+1} &= B_{2n} + C_{2n}, \\
C_{2n+1} &= 2C_{2n}.
\end{align*}
\]

It follows that \(Q_n = A_n - C_n = F_{n+1} \). (See exercise 5.75 for wraparound binomial coefficients of order 3.)

6.58 (a) \(\sum_{n \geq 0} \frac{F_n z^n}{n!} = z[(1 - z)/(1 + z)(1 - 3z + z^2)] = \frac{1}{2}((1 - 3z)/(1 - z + 2z^2) - 2/(1 + z)) \).
(b) \(\sum_{n \geq 0} \frac{F_n^3 z^n}{n!} = z((1 - 2z - z^2)/(1 - 4z - z^2)(1 + z - z^2)) = \frac{1}{3}(2z/[1 - 4z - z^2] + 3z/[1 + z - z^2]) \).

These formulas are obtained by squaring or cubing Binet's formula (6.123) and summing on \(n \), then combining terms so that \(\phi \) and \(\bar{\phi} \) disappear. It follows that \(F_{n+1}^3 = 4F_n^3 - F_{n-1}^3 = 3(-1)^n F_n \).

(The corresponding recurrence for \(m \)th powers has been found by Jarden and Motakin [163].)

6.59 Let \(m \) be fixed. We can prove by induction on \(n \) that it is, in fact, possible to find such an \(x \) with the additional condition \(x \equiv 2 \pmod{4} \). If \(x \) is such a solution, we can move up to a solution modulo \(3^n + 1 \) because
\[
F_{8 \cdot 3^n - 1} = 3^n.
\]

either \(x \) or \(x + 8 \cdot 3^n \) or \(x + 16 \cdot 3^n \) will do the job.

6.60 \(F_1 + 1, F_2 + 1, F_3 + 1, F_4 + 1, F_6 - 1 \) are the only cases. Otherwise the Lucas numbers of exercise 28 arise in the factorizations
\[
\begin{align*}
F_{2m} + (-1)^m &= L_{m+1} F_m + 1, \\
F_{2m+1} + (-1)^m &= L_m F_{m+1}; \\
F_{2m} - (-1)^m &= L_m F_{m+1}, \\
F_{2m+1} - (-1)^m &= L_m F_m.
\end{align*}
\]

(We have \(F_{m+1} - (-1)^n F_{n+1} = L_m F_n \) in general.)

6.61 \(1/F_{2m} = F_m \), \(F_m = F_{2m} - F_{2m-1} / F_{2m} \) when \(m \) is even and positive. The second sum is \(5/4 \) \(F_{3 \cdot 2^n - 1} / F_{3 \cdot 2^n} \), for \(n \geq 1 \).