6.85 The property holds if and only if \(N \) has one of the seven forms \(5^k, 2 \cdot 5^k, 4 \cdot 5^k, 3 \cdot 5^k, 6 \cdot 5^k, 7 \cdot 5^k, 14 \cdot 5^k \).

6.86 A candidate for the case \(n \mod 1 = \frac{1}{2} \) appears in [179, section 6], although it may be best to multiply the integers discussed there by some constant involving \(\sqrt{\pi} \).

6.87 (a) If there are only finitely many solutions, it is natural to conjecture that the same holds for all primes. (b) The behavior of \(b_n \) is quite strange: We have \(b_n = \text{lcm}(1, \ldots, n) \) for \(968 \leq n \leq 1066 \); on the other hand, \(b_{600} = \frac{\text{lcm}(1, \ldots, 600)}{3^3 \cdot 5^2 \cdot 43} \). Andrew Odlyzko observes that \(p \) divides \(\text{lcm}(1, \ldots, n)/b_n \) if and only if \(kp^m \leq n < (k+1)p^m \) for some \(m \geq 1 \) and some \(k < p \) such that \(p \) divides the numerator of \(H_k \). Therefore infinitely many such \(n \) exist if it can be shown, for example, that almost all primes have only one such value of \(k \) (namely \(k = p - 1 \)).

6.88 (Brent [33] found the surprisingly large partial quotient 1568705 in \(e^\gamma \), but this seems to be just a coincidence. For example, Gosper has found even larger partial quotients in \(\pi \): The 453,294th is 12996958 and the 411,504,931st is 878783625.)

6.89 Consider the generating function \(\sum_{m,n \geq 0} \frac{m+n}{m} w^m z^n \), which has the form \(\sum_n (w F(a, b, c) + z F(a', b', c'))^n \), where \(F(a, b, c) \) is the differential operator \(a + b z^4 + c z^5 \).

7.1 Substitute \(z^4 \) for \(w \) and \(z \) for \(z \) in the generating function, getting \(1/(1 - z^4 - z^2) \). This is like the generating function for \(T \), but with \(z \) replaced by \(z^2 \). Therefore the answer is zero if \(m \) is odd, otherwise \(F_{m/2+1} \).

7.2 \(G(z) = 1/(1 - 2z) + 1/(1 - 3z); \hat{G}(z) = e^{2z} + e^{3z} \).

7.3 Set \(z = 1/10 \) in the generating function, getting \(\frac{10}{9} \ln \frac{10}{9} \).

7.4 Divide \(P(z) \) by \(Q(z) \), getting a quotient \(T(z) \) and a remainder \(P_0(z) \) whose degree is less than the degree of \(Q \). The coefficients of \(T(z) \) must be added to the coefficients \([z^n] P_0(z)/Q(z) \) for small \(n \). (This is the polynomial \(T(z) \) in (7.28).)

7.5 This is the convolution of \((1 + z^2)^r \) with \((1 + z)^r \), so
\[
S(z) = (1 + z + z^2 + z^3)^r.
\]
Incidentally, no simple form is known for the coefficients of this generating function; hence the stated sum probably has no simple closed form. (We can use generating functions to obtain negative results as well as positive ones.)