The converse is similar. (One consequence is that \(G(z) \) is differentiably finite if and only if the corresponding egf, \(\hat{G}(z) \), is differentiably finite.)

7.21 This is the problem of giving change with denominations 10 and 20, so
\[G(z) = \frac{1}{1 - (1 - z^{10}) (1 - z^{20})} = \hat{G}(z^{10}) \]
where \(\hat{G}(z) = 1 - (1 - z)^{-1} + \frac{1}{2} (1 + z)^{-1} \), so
\[[z^n] \hat{G}(z) = \frac{1}{4} (2n + 3 + (-1)^n) \]. Setting \(n = 50 \) yields 26 ways to make the payment. (b) \(\hat{G}(z) = \frac{[1 + z]}{[1 - z^2]}^2 = \frac{1}{(1 + 2z^2 + 3z^4 + \cdots)} \), so
\[[z^n] \hat{G}(z) = \frac{n}{2} + 1 \]. (Compare this with the value \(N_n = \left\lfloor \frac{n}{5} \right\rfloor + 1 \) in the text's coin-changing problem. The bank robber's problem is equivalent to the problem of making change with pennies and tuppences.)

7.22 Each polygon has a "base" (the line segment at the bottom). If \(A \) and \(B \) are triangulated polygons, let \(A \triangle B \) be the result of pasting the base of \(A \) to the upper left diagonal of \(\triangle \), and pasting the base of \(B \) to the upper right diagonal. Thus, for example,

![Diagram of a triangulated polygon](Image)

(The polygons might need to be warped a bit and/or banged into shape.) Every triangulation arises in this way, because the base line is part of a unique triangle and there are triangulated polygons \(A \) and \(B \) at its left and right.

Replacing each triangle by \(z \) gives a power series in which the coefficient of \(z^n \) is the number of triangulations with \(n \) triangles, namely the number of ways to decompose an \((n+2) \)-gon into triangles. Since \(P = 1 + zP^2 \), this is the generating function for Catalan numbers \(C_0 + C_1 z + C_2 z^2 + \ldots \); the number of ways to triangulate an \(n \)-gon is \(C_{n-2} = \frac{(2n-4)!}{(n-2)!} \).

7.23 Let \(a_n \), be the stated number, and \(b_n \), the number of ways with a 2x1 x 1 notch missing at the top. By considering the possible patterns visible on the top surface, we have

\[
\begin{align*}
 a_n &= 2a_{n-1} + 4b_{n-1} + a_{n-2} + [n = 01]; \\
 b_n &= a_{n-1} + b_{n-1}.
\end{align*}
\]

Hence the generating functions satisfy \(A = 2zA + 4zB + z^2 A + 1, B = zA + zB, \) and we have

\[
A(z) = \frac{1 - z}{(1 + z)(1 - 4z + z^2)}.
\]

This formula relates to the problem of 3 x n domino tilings; we have \(a_n = \frac{1}{3} (U_{2n} + V_{2n+1} + (-1)^n) = \frac{1}{6} (2 + \sqrt{3})^n + \frac{1}{6} (2 - \sqrt{3})^n + \frac{1}{3} (-1)^n \), which is \((2 + \sqrt{3})^{n+1}/6 \) rounded to the nearest integer.