Because the null hypothesis is not a 25:25:25:25 distribution across the four categories, we need to calculate the expected frequencies explicitly:

\[
\text{expected} = 556 \times \frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16} \\
312.75 \quad 104.25 \quad 104.25 \quad 34.75
\]

The expected frequencies are very close to the observed frequencies in Mendel’s experiment, but we need to quantify the difference between them and ask how likely such a difference is to arise by chance alone:

\[
\text{chisq.test(observed,p=c(9,3,3,1),rescale.p=TRUE)}
\]

```
Chi-squared test for given probabilities
data: observed
X-squared = 0.47, df = 3, p-value = 0.9254
```

Note the use of different probabilities for the four phenotypes \(p = c(9,3,3,1) \). Because these values do not sum to 1.0, we require the extra argument \(\text{rescale.p=TRUE} \). A difference as big as or bigger than the one observed will arise by chance alone in more than 92% of cases and is clearly not statistically significant. The chi-squared value is

\[
\sum((\text{observed}-\text{expected})^2/\text{expected})
\]

```
[1] 0.470024
```

and the \(p \)-value comes from the right-hand tail of the cumulative probability function of the chi-squared distribution \(1 - \text{pchisq} \) with 3 degrees of freedom (4 comparisons –1 for contingency; the total count must be 556)

\[
1 - \text{pchisq}(0.470024,3)
\]

```
[1] 0.9254259
```

exactly as we obtained using the built-in \texttt{chisq.test} function, above.

Two-by-Two Contingency Tables

Count data are often classified by more than one categorical explanatory variable. When there are two explanatory variables and both have just two levels, we have the famous two-by-two contingency table (see p. 309). We can return to the example of Mendel’s peas. We need to convert the vector of observed counts into a matrix with two rows:

\[
\text{observed} = \text{matrix(\text{observed}, nrow=2)}
\]

```
observed
 [,1] [,2]
[1,] 315 108
[2,] 101 32
```

Fisher’s exact test (p. 308) can take such a matrix as its sole argument:

\[
\text{fisher.test(\text{observed})}
\]
Fisher’s Exact Test for Count Data

- **data:** observed
- **p-value:** 0.819
- **alternative hypothesis:** true odds ratio is not equal to 1
- **95 percent confidence interval:**
 - 0.5667874 to 1.4806148
- **sample estimates:**
 - **odds ratio:** 0.9242126

Alternatively we can use Pearson’s chi-squared test with Yates’ continuity correction:

```r
chisq.test(observed)
```

Pearson’s Chi-squared test with Yates’ continuity correction

- **data:** observed
- **X-squared:** 0.0513, df = 1, **p-value:** 0.8208

Again, the \(p \)-values are different with different tests, but the interpretation is the same: these pea plants behave in accordance with Mendel’s predictions of two independent traits, coat colour and seed shape, each segregating 3:1.

Using Log-linear Models for Simple Contingency Tables

It is worth repeating these simple examples with a log-linear model so that when we analyse more complex cases you have a feel for what the GLM is doing. Recall that the deviance for a log-linear model of count data (p. 516) is

\[
\text{deviance} = 2 \sum O \ln \left(\frac{O}{E} \right),
\]

where \(O \) is a vector of observed counts and \(E \) is a vector of expected counts. Our first example had 29 males and 18 females and we wanted to know if the sex ratio was significantly male-biased:

```r
observed<-c(29,18)
summary(glm(observed~1,poisson))
```

- **Null deviance:** 2.5985 on 1 degrees of freedom
- **Residual deviance:** 2.5985 on 1 degrees of freedom
- **AIC:** 14.547
- **Number of Fisher Scoring iterations:** 4

Only the bottom part of the summary table is informative in this case. The residual deviance is compared to the critical value of chi-squared in tables with 1 d.f.:

```r
1-pchisq(2.5985,1)
```

[1] 0.1069649

We accept the null hypothesis that the sex ratio is 50:50 (\(p = 0.10696 \)).

In the case of Mendel’s peas we had a four-level categorical variable (i.e. four phenotypes) and the null hypothesis was a 9:3:3:1 distribution of traits: