This distribution has $\kappa_4 = 2974$, which is rather large. Hence the standard deviation of this variance estimate when $n = 10$ is also rather large, $\sqrt{2974/10 + 2(22)^2/9} \approx 20.1$ according to exercise 54. One cannot complain that the students cheated.

This follows from (8.38) and (8.39), because $F(z) = G(z)H(z)$. (A similar formula holds for all the cumulants, even though $F(z)$ and $G(z)$ may have negative coefficients.)

Replace H by p and T by $q = 1 - p$. If $S_A = S_B = \frac{1}{2}$ we have $p^2qN = \frac{1}{2}$ and $pq^2N = \frac{1}{2}q + \frac{1}{2}p$; the solution is $p = 1/\phi^2$, $q = 1/\phi$.

In this case $X|Y$ has the same distribution as X, for all y, hence $E(X|Y) = EX$ is constant and $V(E(X|Y)) = 0$. Also $V(X|Y)$ is constant and equal to its expected value.

We have $1 = (p_1 + p_2 + \ldots + p_6)^2 \leq 6(p_1^2 + p_2^2 + \ldots + p_6^2)$ by Chebyshev's summation inequality of Chapter 2.

Let $p = \Pr(\omega \in A \cap B)$, $q = \Pr(\omega \notin A)$, and $r = \Pr(\omega \notin B)$. Then $p + q + r = 1$, and the identity to be proved is $(p + r)(p + q) - qr$.

This is true (subject to the obvious proviso that F and G are defined on the respective ranges of X and Y), because

$$
\Pr(F(X) = f \text{ and } G(Y) = g) = \sum_{x \in F^{-1}(f) \cap G^{-1}(g)} \Pr(X = x \text{ and } Y = y)
$$

$$
= \sum_{x \in F^{-1}(f)} \Pr(X = x) \cdot \Pr(Y = y)
$$

$$
= \Pr(F(X) = f) \cdot \Pr(G(y) = g).
$$

Two. Let $x_1 < x_2$ be medians; then $1 \leq \Pr(X \leq x_1) + \Pr(X \geq x_2) \leq 1$, hence equality holds. (Some discrete distributions have no median elements. For example, let Ω be the set of all fractions of the form $\pm 1/n$, with $\Pr(\pm 1/n) = \Pr(-1/n) = n^{-2}$.)

For example, let $K = k$ with probability $4/(k + 1)(k + 2)(k + 3)$, for all integers $k \geq 0$. Then $EK = 1$, but $E[K^2] = \infty$. (Similarly we can construct random variables with finite cumulants through κ_m but with $\kappa_{m+1} = \infty$.)

(a) Let $p_k = \Pr(X = k)$. If $0 < x \leq 1$, we have $\Pr(X \leq x) = \sum_{k \leq x} p_k \leq \sum_{k \leq r} x^{k-r}p_k \leq \sum_k x^{k-r}p_k \leq x^{-r}P(x)$. The other inequality has a similar proof. (b) Let $x = \alpha/(1 - \alpha)$ to minimize the right-hand side. (A more precise estimate for the given sum is obtained in exercise 9.42.)