We can now derive the recurrence
\[D''(1) = (n-11)D''(1)/(n+1) + (8n-2)/7, \]
which has the solution \(\frac{2}{63}(n+2)(26n+15) \) for all \(n \geq 11 \) (regardless of initial conditions). Hence the variance comes to \(\frac{12}{49}(n+2)(212n+123) \) for \(n \geq 11 \).

8.62 (Another question asks if a given sequence of purported cumulants comes from any distribution whatever; for example, \(\kappa_2 \) must be nonnegative, and \(\kappa_4 + 3\kappa_2^2 = E((X-\mu)^4) \) must be at least \((E((X-\mu)^2))^2 = \kappa_2^2 \), etc. A necessary and sufficient condition for this other problem was found by Hamburger \[6, 144].)

8.63 (Another question asks if there is a simple rule to tell whether \(H \) or \(T \) is preferable.) Conway conjectures that no such ties exist, and moreover that there is only one cycle in the directed graph on \(2^l \) vertices that has an arc from each sequence to its “best beater!”

9.1 True if the functions are all positive. But otherwise we might have, say, \(f_1(n) = n^3 + n^2, f_2(n) = -n^3, g_1(n) = n^4 + n, g_2(n) = -n^4 \).

9.2 (a) We have \(n^{\ln n} \ll \exp(n) \ll \ln n \), since \((\ln n)^2 \ll n \ln n \ll n \ln \ln n \).
(b) \(n^{\ln \ln n} \ll (\ln n)! \ll n^{\ln n} \).
(c) Take logarithms to show that \((n!)! \) wins.
(d) \(n^{\ln \ln n} \ll \phi^{\ln n} = n^{2\ln \phi}; H_{r_n} \sim n \ln \phi \) wins because \(\phi^2 = \phi + 1 < e \).

9.3 Replacing \(kn \) by \(0(n) \) requires a different \(C \) for each \(k \); but each \(0 \) stands for a single \(C \). In fact, the context of this 0 requires it to stand for a set of functions of two variables \(k \) and \(n \). It would be correct to write \(\sum_{k=1}^{n} kn = \sum_{k=1}^{n} O(n^2) = O(n^3) \).

9.4 For example, \(\lim_{n \to \infty} O(1/n) = 0 \). On the left, \(O(1/n) \) is the set of all functions \(f(n) \) such that there are constants \(C \) and \(n_0 \) with \(|f(n)| \leq C/n \) for all \(n \geq n_0 \). The limit of all functions in that set is 0, so the left-hand side is the singleton set \(\{0\} \). On the right, there are no variables; 0 represents \(\{0\} \), the (singleton) set of all “functions of no variables, whose value is zero!” (Can you see the inherent logic here? If not, come back to it next year; you probably can still manipulate \(O \)-notation even if you can’t shape your intuitions into rigorous formalisms.)

9.5 Let \(f(n) = n^n \) and \(g(n) = 1 \); then \(n \) is in the left set but not in the right, so the statement is false.

9.6 \(n \ln n + \gamma n + O(\sqrt{n} \ln n) \).

9.7 \((1 - e^{-1/n})^{-1} = nB_0 - B_1 + B_2 n^{-1}/2! + \cdots = n + \frac{1}{2} + O(n^{-1}) \).

9.8 For example, let \(f(n) = [n/2]^2 + n, g(n) = \left(\left[\frac{n}{2} \right] - 1! \right) \left[\frac{n}{2} \right]! + n \). These functions, incidentally, satisfy \(f(n) = O(g(n)) \) and \(g(n) = O(n f(n)) \); more extreme examples are clearly possible.