Hence \(S_n = \frac{1}{4} \pi n^{-1} - \frac{1}{4} n^{-2} - \frac{1}{24} n^{-3} + O(n^{-5}) \).

9.37 This is

\[
\sum_{k,q \geq 1} (n-qk)[n/(q+1) < k \leq n/q] = n^2 \sum_{q \geq 1} q \left(\left\lfloor \frac{n}{q+1} \right\rfloor + 1 \right) - \left\lfloor \frac{n}{q} \right\rfloor = n^2 \sum_{q \geq 1} \left(\left\lfloor \frac{n}{q} \right\rfloor + 1 \right).
\]

The remaining sum is like (9.55) but without the factor \(u(q) \). The same method works here as it did there, but we get \(\zeta(2) \) in place of \(1/\zeta(2) \), so the answer comes to \(\left(1 - \frac{n^2}{2} \right) n^2 + O(n\log n) \).

9.38 Replace \(k \) by \(n - k \) and let \(o_k(n) = (n-k)^{n-k} \left(\begin{array}{c} n \\ k \end{array} \right) \). Then \(\ln o_k(n) = \ln n - \ln k + O(kn^{-1}) \), and we can use tail-exchange with \(b_k(n) = n^k e^{-k/n} \), \(c_k(n) = k b_k(n)/n \), \(D_n = \{ k < \ln n \} \), to get \(\sum_{k=0}^n o_k(n) = n^n e^{1/e} (1 + O(n^{-1})) \).

9.39 Tail-exchange with \(b_k(n) = (\ln n - k/n - \frac{1}{2} k^2/n^2)(\ln n)^k/k! \), \(c_k(n) = n^{-3}(\ln n)^{k+3}/k! \), \(D_n = \{ k < 10 \ln n \} \). When \(k \approx 10 \ln n \) we have \(k! \approx (10/e)^k (\ln n)^k \), so the kth term is \(O(n^{-10 \ln (10/e) \log n}) \). The answer is \(n \ln n (1 + 10 \ln (1 + \ln n))/n + O(n^{-2(\log n)^3}) \).

9.40 Combining terms two by two, we find that \(H_{2k}^m - (H_{2k} - \frac{1}{2k}) = \frac{m}{2k} H_{2k}^{m-1} \) plus terms whose sum over all \(k \geq 1 \) is \(O(1) \). Suppose \(n \) is even. Euler's summation formula implies that

\[
\sum_{k=1}^{n/2} \frac{H_{2k-1}^m}{k} = \sum_{k=1}^{n/2} \frac{(\ln 2 + 1/k)}{k} + O(1) = \frac{(\ln n)^m}{m} + O(1)
\]

hence the sum is \(\frac{1}{2} H_n^m + O(1) \). In general the answer is \(\frac{1}{2} (-1)^n H_n^m + O(1) \).

9.41 Let \(\alpha = \phi/\phi = -\phi^{-2} \). We have

\[
\sum_{k=1}^n \ln F_k = \sum_{k=1}^n (\ln \phi^k - \ln \sqrt{5} + \ln (1 - \alpha^k)) = \frac{n(n+1)}{2} \ln \phi - \frac{n}{2} \ln 5 + \sum_{k \geq 1} \ln (1 - \alpha^k) - \sum_{k > n} \ln (1 - \alpha^k).
\]

The latter sum is \(\sum_{k > n} O(\alpha^k) = O(\alpha^n) \). Hence the answer is

\[
\phi^{n(n+1)/2} \frac{5^{n/2} C + O(\phi^{n(n+1)/2} 5^{n/2})}{C = (1 - \alpha)(1 - \alpha^2)(1 - \alpha^3) \ldots \approx 1.226742}. \]