10.6 Other Heat Conduction Problems

11. Consider a rod of length 30 cm for which \(\alpha^2 = 1 \). Suppose the initial temperature distribution is given by \(u(x, 0) = x(60 - x)/30 \) and that the boundary conditions are \(u(0, t) = 30 \) and \(u(30, t) = 0 \).

(a) Find the temperature in the rod as a function of position and time.

(b) Plot \(u \) versus \(x \) for several values of \(t \). Also plot \(u \) versus \(t \) for several values of \(x \).

(c) Plot \(u \) versus \(x \) for several values of \(t \). Also plot \(u \) versus \(t \) for several values of \(x \).

(d) What limiting value does the temperature at the center of the rod approach after a long time? How much time must elapse before the center of the rod cools to within 1 degree of its limiting value?

12. Consider a uniform rod of length \(L \) with an initial temperature given by \(u(x, 0) = \sin(\pi x/L), \) \(0 \leq x \leq L \). Assume that both ends of the bar are insulated.

(a) Find the temperature \(u(x, t) \).

(b) What is the steady-state temperature as \(t \to \infty \)?

(c) Let \(\alpha^2 = 1 \) and \(L = 40 \). Plot \(u \) versus \(x \) for several values of \(t \). Also plot \(u \) versus \(t \) for several values of \(x \).

(d) Describe briefly how the temperature in the rod changes as time progresses.

13. Consider a bar of length 40 cm whose initial temperature is given by \(u(x, 0) = x(60 - x)/30 \). Suppose that \(\alpha^2 = 1/4 \text{ cm}^2/\text{sec} \) and that both ends of the bar are insulated.

(a) Find the temperature \(u(x, t) \).

(b) Plot \(u \) versus \(x \) for several values of \(t \). Also plot \(u \) versus \(t \) for several values of \(x \).

(c) Determine the steady-state temperature in the bar.

(d) Determine how much time must elapse before the temperature at \(x = 40 \) comes within 1 degree of its steady-state value.

14. Consider a bar 30 cm long that is made of a material for which \(\alpha^2 = 1 \) and whose ends are insulated. Suppose that the initial temperature is zero except for the interval \(5 < x < 10 \), where the initial temperature is 25°C.

(a) Find the temperature \(u(x, t) \).

(b) Plot \(u \) versus \(x \) for several values of \(t \). Also plot \(u \) versus \(t \) for several values of \(x \).

(c) Plot \(u(4, t) \) and \(u(11, t) \) versus \(t \). Observe that the points \(x = 4 \) and \(x = 11 \) are symmetrically located with respect to the initial temperature pulse, yet their temperature plots are significantly different. Explain physically why this is so.

15. Consider a uniform bar of length \(L \) having an initial temperature distribution given by \(f(x), 0 \leq x \leq L \). Assume that the temperature at the end \(x = 0 \) is held at 0°C, while the end \(x = L \) is insulated so that no heat passes through it.

(a) Show that the fundamental solutions of the partial differential equation and boundary conditions are

\[
\begin{align*}
 u_n(x, t) &= e^{-(2n - 1)^2 \pi^2 / 4L^2} \sin[(2n - 1)\pi x / 2L], \\
 &\quad n = 1, 2, 3, \ldots
\end{align*}
\]

(b) Find a formal series expansion for the temperature \(u(x, t) \),

\[
u(x, t) = \sum_{n=1}^{\infty} c_n u_n(x, t),
\]

that also satisfies the initial condition \(u(x, 0) = f(x) \).

Hint: Even though the fundamental solutions involve only the odd sines, it is still possible